Pengertian Hormon Tumbuhan
Secara umum, hormon adalah suatu kimia dari organ tertentu. Tetapi pada kali ini kita akan membahas hormon pada tumbuhan. Hormon tumbuhan atau sering disebut dengan fitohormon merupaan senyawa organik yang dibuat pada suatu bagian tumbuhan yang kemudian akan diangkut kebagian lain dari tumbuhan itu dengan konsentrasi yang rendah sehingga dapat menyebabkan dampak fisiologis. Hormon yang dibuat oleh organisme atau bukan tumbuhan, maka tidak dapat digolongkan sebagai hormon tumbuhan, akan tetapi disebut sebagai zat pengatur dalam tumbuhan.
Hormon merupakan zat pengatur tumbuh, yaitu molekul organik yang dihasilkan oleh satu bagian tumbuhan dan ditransportasikan ke bagian lain yang dipengaruhinya. Hormon pada tumbuhan (fitohormon) adalah sekumpulan senyawa organik bukan hara (nutrien), baik yang terbentuk secara alami maupun dibuat oleh manusia, yang dalam kadar sangat kecil (di bawah satu milimol per liter, bahkan dapat hanya satu mikromol per liter) mendorong, menghambat, atau mengubah pertumbuhan, perkembangan, dan pergerakan (taksis) tumbuhan. Hormon tumbuhan merupakan bagian dari sistem pengaturan pertumbuhan dan perkembangan tumbuhan. Kehadirannya di dalam sel pada kadar yang sangat rendah menjadi prekursor (“pemicu”) proses transkripsi RNA. Hormon tumbuhan sendiri dirangsang pembentukannya melalui signal berupa aktivitas senyawa-senyawa reseptor sebagai tanggapan atas perubahan lingkungan yang terjadi di luar sel. Kehadiran reseptor akan mendorong reaksi pembentukan hormon tertentu. Apabila konsentrasi suatu hormon di dalam sel telah mencapai tingkat tertentu, atau mencapai suatu nisbah tertentu dengan hormon lainnya, sejumlah gen yang semula tidak aktif akan mulai berekspresi. Dari sudut pandang evolusi, hormon tumbuhan merupakan bagian dari proses adaptasi dan pertahanan diri tumbuh-tumbuhan untuk mempertahankan kelangsungan hidup jenisnya.
Hormon tumbuhan merupakan bagian dari proses regulasi genetik dan berfungsi sebagai prekursor. Rangsangan lingkungan memicu terbentuknya hormon tumbuhan. Bila konsentrasi hormon telah mencapai tingkat tertentu, sejumlah gen yang semula tidak aktif akan mulai ekspresi. Dari sudut pandang evolusi, hormon tumbuhan merupakan bagian dari proses adaptasi dan pertahanan diri tumbuh-tumbuhan untuk mempertahankankelangsungan hidup jenisnya.Pemahaman terhadap fitohormon pada masa kini telah membantu peningkatan hasil pertanian dengan ditemukannya berbagai macam zat sintetis yang memiliki pengaruh yang sama dengan fitohormon alami. Aplikasi zat pengatur tumbuh dalam pertanian modern mencakup pengamanan hasil (seperti penggunaan cycocel untuk meningkatkan ketahanan tanaman terhadap lingkungan yang kurang mendukung), memperbesar ukuran dan meningkatkan kualitas produk (misalnya dalam teknologi semangka tanpa biji), atau menyeragamkan waktu berbunga (misalnya dalam aplikasi etilena untuk penyeragamanpembungaan tanaman buah musiman), untuk menyebut beberapa contohnya. Hormon tumbuhan tidak dihasilkan oleh suatu kelenjar sebagaimana pada hewan, melainkan dibentuk oleh sel-sel yang terletak di titik-titik tertentu pada tumbuhan, terutama titik tumbuh di bagian pucuk tunas maupun ujung akar. Selanjutnya, hormon akan bekerja pada jaringan di sekitarnya atau, lebih umum, ditranslokasi ke bagian tumbuhan yang lain untuk aktif bekerja di sana. Pergerakan hormon dapat terjadi melalui pembuluh tapis, pembuluh kayu, maupun ruang-ruang antarsel. Hormon dalam menjalankan perannya, dapat berperan secara tunggal maupun dalam koordinasi dengan kelompok hormon lainnya.
Penggunaan istilah “hormon” sendiri menggunakan analogi fungsi hormon pada hewan. Hormon dalam konsentrasi rendah menimbulkan respons fisiologis. Terdapat 2 kelompok hormon yaitu :
- Hormon pemicu pertumbuhan (auksin, Giberelin dan sitokinin)
- Hormon penghambat pertumbuhan (asam absisat, gas etilen, hormon kalin dan asam traumalin.
Baca Juga Artikel Yang Mungkin Berhubungan : Pengertian dan Fungsi Hormon Etilen
Mekanisme Kerja Hormon
Tanaman secara alamiah tanaman sudah mengandung hormon pertumbuhan seperti Auksin, giberelin dan Sitokin yang dalam tulisan ini diistilahkan dengan hormon endogen. Kebanyakan hormon endogen di tanaman berada pada jaringan meristem yaitu jaringan yang aktif tumbuh seperti ujung-ujung tunas/tajuk dan akar. Tetapi karena pola budidaya yang intensif yang disertai pengelolaan tanah yang kurang tepat maka kandungan hormon endogen tersebut menjadi rendah/kurang bagi proses pertumbuhan vegetatif dan generatif tanaman. Akibatnya sering dijumpai pertumbuhan tanamaman lambat, kerontokan bunga/ buah, ukuran umbi/buah kecil yang merupakan sebagian tanda kekurangan hormon (selain kekurangan zat lainnya seperti unsur hara). Oleh karena itu penambahan hormon dari luar (hormon eksogen) seperti produk hormonik yang mengandung hormon Auksin, Giberelin dan Sitokinin organik (Non sintetik/kimia) mutlak diperlukan untuk menghasilkan pertumbuhan vegetatif dan generatif tanaman yang optimal.
Untuk mengetahui bagaimana mekanisme kerja hormonik (Auksin, giberelin dan Sitokinin) pada tanaman, berikut diuraikan secara global dan sederhana. Pemberian Auksin eksogen (hormonik) akan meningkatkan permeabilitas dinding sel yang akan mempertinggi penyerapan unsur , diantaranya unsur N, Mg, Fe, Cu untuk membentuk chlorofil yang sangat diperlukan untuk mempertinggi fotosintesis. Dengan fotosintesis yang semakin meningkat akan dihasilkan hasil fotosintesis yang meningkat dan bersama dengan auxin akan bergerak ke akar untuk memacu pembentukan giberelin dan Sitokinin di akar yang akan membantu pembentukan dan perkembangan akar . Penambahan kandungan Auksin eksogen di akar akan meningkatkan tekanan turgor akar sehingga giberelin dan Sitokinin endogen di akar akan diangkut ke atas/ bagian tajuk tanaman.
Adanya penambahan Sitokinin dan giberelin eksogen maka terjadi peningkatan kandungan Sitokinin dan giberelin ditanaman (tajuk) dan akan meningkatkan jumlah sel (oleh hormon Sitokinin) dan ukuran sel (oleh hormon giberelin) yang bersama-sama dengan hasil fotosintat yang meningkat di awal penanaman akan mempercepat proses pertumbuhan vegetatif tanaman (termasuk pembentukan tunas-tunas baru) selain juga mengatasi kekerdilan tanaman.
Seiring dengan pertumbuhan vegetatif tanaman, hasil fotosentesis akan meningkat terus dan ditambah kandungan giberelin dan sitokinin eksogen akan meningkatkan perbandingan C/N yang menyebabkan peralihan dari masa vegetatif ke generatif dengan terbentuknya kuncup bunga/buah atau umbi. Pada saat terbentuk bunga atau buah, jika kandungan auksin rendah maka sel-sel antara tangkai bunga/buah dengan ranting/cabang akan berubah menjadi jaringan mati yaitu jaringan gabus sehingga bunga/buah mudah rontok. Dengan penambahan Auxin Eksogen akan menghambat perubahan sel-sel tersebut menjadi jaringan gabus sehingga kerontokkan dapat dicegah/dikurangi. Pada fase generatif ini penambahan hormon sitokinin dan giberelin eksogen akan meningkatkan kapasitas jaringan penyimpanan hasil fotosintesa yang dipanen (umbi, buah dll) yaitu sitokinin akan memperbanyak sel jaringan penyimpanan dan giberelin akan memperbesar sel jaringan penyimpanan sehingga mampu menerima hasil-hasil fotosintesa lebih banyak yang berakibat ukuran jaringan penyimpanan (buah) lebih besar (semangka, kentang, dll) atau bernas (padi, jagung dll).
Baca Juga Artikel Yang Mungkin Berhubungan : Pengertian Hormon Progesteron dan penggantian Hormon Progesteron (LENGKAP)
Macam Hormon Tumbuhan
Macam hormon yang terdapat pada tumbuhan, antara lain auksin, giberelin, sitokinin, etilen, asam traumalin, asam absisat, kalin.
-
Auksin
Aukin merupakan senyawa asetat (gugus indol) yang terdapat pada indol, contohnya pada tanaman bawang merah (Allium cepa).Konsentrasi auksin lebih banyak terdapat pada daerah yang tidak terkena cahaya. Bagi tanaman (batang) yang tidak terkena cahaya akan mengalami pertumbuhan yang lebih cepat dibandingkan bagian lain yang terkena cahaya matahari akibat adanya auksin ini. Pada tumbuhan, auksin dapat ditemukan di embrio biji, meristem tunas apical, dan daun-daun muda.
Selain berpengaruh menigkatkan laju pemanjangan sel pada pertumbuhan seperti di uraikan di atas, auksin juga merupakan hormone pengatur fisiologi yang dapat digunakan untuk memacu pembentukan buah tanpa penyerbukan (disebut partenokarpi).
Berdasarkan penelitian dari F.W.Went (1926-1928) maka dapat diketahui tentang adanya zat yang dihasilkan oleh ujung tumbuhan yang memiliki pengaruh besar terhadap tumbuhan. Zat tersebut dikenal dengan auksin. Ternyata auksin ditemukan di ujung batang dan akar serta tempat pada pembentukan bunga, buah serta daun pada tumbuh-tumbuhan.
Fungsi Auksin dianntaranya adalah sebagai berikut
- Sebagai pengatur pembesaran sel dan memacu dalam pemanjangan sel didaerah belakang meristem di ujung.
- Meningkatkan perkembangan bunga dan buah pada tumbuhan
- Sebagai perangsang pembelahan sel-sel kambium.
- Merangsang perkembangan akar tumbuhan.
Pada tanaman yang banyak mengandung auksin akan memiliki ukuran yang lebih panjang apabila dibandingkan dengan yang mengandung sedikit auksin. Yang akibatnya akan dapat membengkokkan batang. Pembengkokkan batang juga berpengaruh dari arah datangnya sinar. Sehingga batang yang terkena sinar akan memiliki auksin lebih sedikit, dikarenakan auksin akan mengalami kerusakan apabila terkena sinar.
-
Sitokinin
Sitokinin memiliki peranan dalam merangsang pembelahan sel (sitokinesis), menghambat efek auksin, menunda penuaan, pembentukan batang dan tunas pada kalus serta mempertahankan kesegaran jaringan.
Hormon sitokinin telah ditemukan oleh Folke Skog pada tahun 1950, yang percobaan pertamanya diambil dari endorsa biji jagung sekitar tahun 1964 oleh Letham yang kemudian diberinama dengan zeatin. Sitokinin yang alami lebih banyak terdapat pada tumbuhan seperti (buah, biji, daun) dan pada ujung akar. Sedangkan sitokinin buatan misalnya pada kinetin dan BAP (g-benzilaminopurin).
Sitokinin ditemukan pada batang t*mbak*u Oleh Skoog dan Miller.Struktur kimia sitokinin mirip dengan adenine (basa nitrogen yang terdapat pada DNA dan ATP). Selain dapat ditemukan di batang, sitokinin juga dapat di hasilkan di dalam akar dan akan diangkut ke organ yang lain.
Fungsi Sitokinin, antara lain :
- Memacau pembelahan sel
- Mempercepat pelebaran daun
- Mempercepat tumbuhnya akar
- Memacu pertunasan lateral pada pucuk batang
- Menunda pengguguran daun, Bungan, dan buah.
-
Giberelin
Giberelin merupakan hormon tumbuhan yang ditemukan oleh F. Kurusawa di Negara Jepang sekitar tahun (1926). Pada saat itu F. Kurusawa mempelajari penyakit pada tumbuhan padi. Yang kemudian F. Kurusawa menemukan bahwa tanaman padi yang terserang jamur Giberella fujikuroi akan mengalami proses pertumbuhan yang cepat, memiliki batang yang tinggi serta warna yang pucat.
Giberelin dapat ditemukan pada semua bagian tanaman misalnya pada ujung akar, pucuk batang, bunga, buah dan juga biji. Yang kemudian setelah diisolasi senyawa yang dihasilkann dari jamur tersebut diberinama Giberelin. Peranan hormon Giberelin yatu merangsang pembelahan pada sel, pembentukan tunas, mempercepat dalam pertumbuhan bunga serta dapat merangsang pertumbuhan buah secara pertenokarpi (tanpa fertilisasi).
Giberelin merupakan hormon yang mirip dengan auksin. Hormone ini ditemukan Oleh P. kurosawa (tahun 1926, di Jepang) pada jamur Giberella fujikuroi. Giberelin di produksi oleh tumbuhan di meristem tunas apical, akar, daun muda, dan embrio.
Fungsi giberelin :
- Memacu pertumbuhan buah tanpa biji (partenokarpi)
- Menyebabkan tanaman mengalami pertumbuhan raksasa
- Meyebabkan tanaman berbunga sebelum waktunya (tidak pada musimnya)
- Memacu pembentukan cambium pada tanaman dikotil
- Mematahkan dormansi buah dan biji
-
Sitokinin
Sitokinin ditemukan pada batang t*mbak*u Oleh Skoog dan Miller.Struktur kimia sitokinin mirip dengan adenine (basa nitrogen yang terdapat pada DNA dan ATP). Selain dapat ditemukan di batang, sitokinin juga dapat di hasilkan di dalam akar dan akan diangkut ke organ yang lain.
Fungsi Sitokinin, antara lain :
- Memacau pembelahan sel
- Mempercepat pelebaran daun
- Mempercepat tumbuhnya akar
- Memacu pertunasan lateral pada pucuk batang
- Menunda pengguguran daun, Bungan, dan buah.
-
Etilen
Etilen merupakan satu-satunya hormone tumbuhan yang berbentuk gas.Gas etilen mempercepat pemasakan buah, contohnya pada buah tomat, pisang, apel, dan jeruk.Buah-buah tersebut dipetik dalam keadaan masih mentah dan berwarna hijau.Selanjutnya, buah-buah tersebut dikemas dalam bentuk kotak berventilasi dan diberi gas etilen untuk mempercepat pemasakan buah sehingga buah sampai ditempat tujuan dalam keadaan masak.Selain itu, gas etilen juga menyebabkan penebalan batang dan memacu pembungaan.Oleh karena itu, etilen dapat ditemukan pada jaringan buah yang sedang matang, buku batang, daun, dan bunga yang menua.
Sekitar tahun 1934 ilmuwan bernawa R. Gane telah berhasil membuktikan bahwa etilen disentesis pada tumbuhan sangat berperan dalam proses percepatan pematangan buah. Hormon gas Etilen merupakan gas yang dikeluarkan oleh buah yang sudah tua. Misalnya ketika buah yang sudah tua dimasukkan disuatu tempat yang tertutup, maka buah tersebut akan cepat matang, hal tersebut dikarenakan buah tersebut mengeluarkan gas etilen sehingga mempercepat proses pemasakan atau pematangan buah.
Selain dalam pemasakan buah, gas etilen juga dapat menyebabkan batang menjadi tebal. Apabila gas etilen dikombinasikan dengan hormon yang lain, maka akan dapat memberikan efek yang sangat menguntungkan. Contohnya yaitu penggabungan antara gas etilen dengan auksin maka akan dapat memacu proses pembuahan ada mangga. Kombinasi antara hormon etilen dan auksin akan dapat mengatur tumbuhnya bunga jantan dan bunga betina.
-
Asam Traumalin
Seperti florigen, asam traumalin sebenarnya merupakan hormon hipotetik yaitu merupakan gabungan beberapa aktivitas hormone yang ada (auksin, giberelin, sitokinin, etilen, dan asam absisat). Apabila tumbuhan mengalami luka atau perlukaan karena gangguan fisik maka akan segera terbentuk cambium gabus. Pembentukan cambium gabus itu terjadi karena adanya pengaruh hormone luka (asam traumalin). Sebenarnya, peristiwa ini merupakan hasil kerja sama antar hormone pada tumbuhan yang di sebut restitusi (regenerasi). Awalnya luka pada tumbuhan akan memacu pengeluaran hormone luka yang kemudian merangsang pembentukan cambium gabus. Pembentukan cambium gabus dilakukan oleh hormone giberelin, selanjutnya, karena pengaruh hormone sitokinin, terbentuklah sel-sel baru yang akan membentuk jaringan penutup luka yang disebut kalus. Asam traumalin ini dapat ditemukan pada dinding sel tumbuhan.
Asam traumatin merupakan hormon luka, kkarena dapat merangsang dalam pembelahan sel-sel di bagian tumbuhan yang luka. Maka dengan begitu bagian tumbuhan yang terluka akan tertutup.
-
Asam Absisat
Tidak semua horman pada tumbuhan akan dapat memacu pertumbuhan. Ada juga hormon yang justru dapat menghambat proses pertumbuhan salah satunya seperti abisat (abisisin). Hormon Asam Abisat ini hormon yang berfungsi sebagai penghambat pembelahan dan untuk proses pemanjangan sel, menunda pertumbuhan dan dapat membantu dormansi. Sehinga dengan adanya hormon tersebut tumbuhan akan dapat bertahan dalam kondisi yang buruk. Contohnya yaitu akan dapat merangsang proses penutupan daun pada musim kering sehingga proses transpirasi akan berkurang dan meluruhkan daun pada musim kering sehingga tumbuhan tidak akan kehilangan air melalui transpirasi.
Salah satu fungsi asam absisat adalah menghambat pertumbuhan tumbuhan. Pada musim tertentu pertumbuhan akan terhambat. Hal itu merupakan adaptasi pertumbuhan terhadap perubahan linkungan yang tidak memungkinkan bagi tumbuhan untuk tumbuh. Asam absisat dapat ditemukan pada daun, batang, akar , dan buah biji.
Fungsi lain asam absisat adalah membantu tumbuhan mengatasi dan bertahan pada kondisi lingkungan yang tidak menguntungkan (masa dormansi). Dalam keadaan dorman, tumbuhan terlihat seperti mati, tetapi setelah kondisi lingkungan menguntungkan, ia akan tumbuh lagi dan mucul tunas-tunas baru. Contohnya adalah pohon jati yang meranggas pada musim kemarau.
- Asam jasmonat
- Steroid (brasinosteroid)
- Salisilat
- Poliamina.
- Asam traumalin
- Kalin
-
Kalin
Hormon kalin merupakan hormon yang memiliki fungsi merangsang dalam proses pembentukan organ tumbuhan. Kalin dapat dibedakan atas rizokalin yang berfungsi untuk merangsang pembentukan akar tumbuhan, kaulin berfungsi sebagai perangsang dalam pembentukan batang, filokalin sebagai perangsang dalam pembentukan daun dan antokalin atau florigen berfungsi sebagai perangsang pembentukan bunga.
Baca Juga Artikel Yang Mungkin Berhubungan : Pengertian dan Fungsi Hormon Auksin
Pengaruh Hormon pada Tumbuhan
Sinyal kimia interseluler untuk pertama kali ditemukan pada tumbuhan. Konsentrasi yang sangat rendah dari senyawa kimia tertentu yang diproduksi oleh tanaman dapat memacu atau menghambat pertumbuhan atau diferensiasi pada berbagai macam sel-sel tumbuhan dan dapat mengendalikan perkembangan bagian-bagian yang berbeda pada tumbuhan.Dengan menganalogikan senyawa kimia yang terdapat pada hewan yang disekresi oleh kelenjar ke aliran darah yang dapat mempengaruhi perkembangan bagian-bagian yang berbeda pada tubuh, sinyal kimia pada tumbuhan disebut hormon pertumbuhan. Namun, beberapa ilmuwan memberikan definisi yang lebih terperinci terhadap istilah hormon yaitu senyawa kimia yang disekresi oleh suatu organ atau jaringan yang dapat mempengaruhi organ atau jaringan lain dengan cara khusus. Berbeda dengan yang diproduksi oleh hewan senyawa kimia pada tumbuhan sering mempengaruhi sel-sel yang juga penghasil senyawa tersebut disamping mempengaruhi sel lainnya, sehingga senyawa-senyawa tersebut disebut dengan zat pengatur tumbuh untuk membedakannya dengan hormon yang diangkut secara sistemik atau sinyal jarak jauh.
Hormon Sitokinin
Hormon Sitokinin berfungsi mempengaruhi pertumbuhan dan diferensiasi akar, mendorong pembelahan sel dan pertumbuh-an secara umum, mendorong perkecambahan, dan menunda penuaan. Cara kerja hormon Sitokinin yaitu dapat meningkatkan pembelahan, pertumbuhan dan perkembangan kultur sel tanaman. Sitokinin juga dapat menunda penuaan daun, bungan, dan buah dgn cara mengontrol dgn baik proses kemunduran yg menyebabkan kematian sel-sel tanaman. Hormon Sitokinin diproduksi pada akar. Sitokinin sering juga dengan kinin, merupakan nama generik untuk substansi pertumbuhan yang khususnya merangsang pembelahan sel (sitokinesis) (Gardner, dkk., 1991). Selanjutnya dijelaskan kinin disintesis dalam akar muda, biji dan buah yang belum masak dan jaringan pemberi makan (misalnya endosperm cair). Buah jagung, pisang, apel, air kelapa muda dan santan kelapa yang belum tua merupakan sumber kinin yang kaya.
Kinin terbentuk dengan cara fiksasi suatu rantai beratom C – 5, ke suatu molekul adenin. Rantai beratom C – 5 dianggap berasal dari isoprena. Basa purin merupakan penyusun kimia yang umum pada kinin alami maupun kinin sintetik (Millers, 1955 dalam Wilkins, 1989). Biosintesis sitokinin dengan bahan dasar mevalonic acid. Sebenarnya sudah sejak tahun 1892 ahli fisologi I. Wiesner, menyatakan bahwa aktivitas pembelahan sel membutuhkan zat yang spesifik dan adanya keseimbangan antara faktor-faktor endogenous. Secara pasti baru tahun 1955 sitokinin ditemukan oleh C.O. Miller, Falke Skoog, M.H. Von Slastea dan F.M. Strong dinyatakan sebagai isolasi zat yang disebut kinetin dari DNA yang diautoklap, sangat aktif sebagai promotor mitosis dan pembelahan sel kalus (Moree, 1979).
Selanjutnya dijelaskan bahwa kata sitokinin berasal dari pengertian cytokinesis yang berarti pembelahan sel. Sitokinin alami ditemukan oleh D.S. Lethan dan C.O. Miller tahun 1963 diisolasi dalam bentuk kristal dari biji jagung yang belum matang disebut zeatin. Sitokini alami terjadi dari derivat isopentenyl adenine. Sitokinin sintetik yang paling umum dimanfaatkan di bidang pertanian seperti BA, kinetin dan PBA. Kinin menimbulkan kisaran respons yang luas, tetapi kinin bertindak secara sinergis dengan auxin dan juga hormon lain.
Sebagian besar tumbuhan memiliki pola pertumbuhan yang kompleks yaitu tunas lateralnya tumbuh bersamaan dengan tunas terminalnya. Pola pertumbuhan ini merupakan hasil interaksi antara auksin dan sitokinin dengan perbandingan tertentu. Sitokinin diproduksi dari akar dan diangkut ke tajuk, sedangkan auksin dihasilkan di kuncup terminal kemudian diangkut ke bagian bawah tumbuhan. Auksin cenderung menghambat aktivitas meristem lateral yang letaknya berdekatan dengan meristem apikal sehingga membatasi pembentukan tunas-tunas cabang dan fenomena ini disebut dominasi apikal. Kuncup aksilar yang terdapat di bagian bawah tajuk (daerah yang berdekatan dengan akar) biasanya akan tumbuh memanjang dibandingkan dengan tunas aksilar yang terdapat dekat dengan kuncup terminal. Hal ini menunjukkan ratio sitokinin terhadap auksin yang lebih tinggi pada bagian bawah tumbuhan.
Interaksi antagonis antara auksin dan sitokinin juga merupakan salah satu cara tumbuhan dalam mengatur derajat pertumbuhan akar dan tunas, misalnya jumlah akar yang banyak akan menghasilkan sitokinin dalam jumlah banyak. Peningkatan konsentrasi sitokinin ini akan menyebabkan sistem tunas membentuk cabang dalam jumlah yang lebih banyak. Interaksi antagonis ini umumnya juga terjadi di antara ZPT tumbuhan lainnya.
Hormon Auksin
Auksin adalah zat yang di temukan pada ujung batang, akar, pembentukan bunga yang berfungsi untuk sebagai pengatur pembesaran sel dan memicu pemanjangan sel di daerah belakang meristem ujung. Hormon auksin adalah hormon pertumbuhan pada semua jenis tanaman.nama lain dari hormon ini adalah IAA atau asam indol asetat. Letak dari hormon auksin ini terletak pada ujung batang dan ujung akar.
Fungsi dari hormon auksin ini dalah membantu dalam proses mempercepat pertumbuhan, baik itu pertumbuhan akar maupun pertumbuhan batang, mempercepat perkecambahan, membantu dalam proses pembelahan sel, mempercepat pemasakan buah, mengurangi jumlah biji dalam buah. kerja hormon auksin ini sinergis dengan hormon sitokinin dan hormon giberelin.tumbuhan yang pada salah satu sisinya disinari oleh matahari maka pertumbuhannya akan lambat karena kerja auksin dihambat oleh matahari tetapi sisi tumbuhan yang tidak disinari oleh cahaya matahari pertumbuhannya sangat cepat karena kerja auksin tidak dihambat.sehingga hal ini akan menyebabkan ujung tanaman tersebut cenderung mengikuti arah sinar matahari atau yang disebut dengan fototropisme.
Untuk membedakan tanaman yang memiliki hormon yang banyak atau sedikit kita harus mengetahui bentuk anatomi dan fisiologi pada tanaman sehingga kita lebih mudah untuk mengetahuinya. sedangkan untuk tanaman yang diletakkan ditempat yang terang dan gelap diantaranya untuk tanaman yang diletakkan ditempat yang gelap pertumbuhan tanamannya sangat cepat selain itu tekstur dari batangnya sangat lemah dan cenderung warnanya pucat kekuningan.hal ini disebabkan karena kerja hormon auksin tidak dihambat oleh sinar matahari. sedangkan untuk tanaman yang diletakkan ditempat yang terang tingkat pertumbuhannya sedikit lebih lambat dibandingkan dengan tanaman yang diletakkan ditempat gelap,tetapi tekstur batangnya sangat kuat dan juga warnanya segar kehijauan, hal ini disebabkan karena kerja hormon auksin dihambat oleh sinar matahari.
Cara kerja hormon Auksin adalah menginisiasi pemanjangan sel dan juga memacu protein tertentu yg ada di membran plasma sel tumbuhan untuk memompa ion H+ ke dinding sel. Ion H+ mengaktifkan enzim ter-tentu sehingga memutuskan beberapa ikatan silang hidrogen rantai molekul selulosa penyusun dinding sel. Sel tumbuhan kemudian memanjang akibat air yg masuk secara osmosis.
Auksin merupakan salah satu hormon tanaman yang dapat meregulasi banyak proses fisiologi, seperti pertumbuhan, pembelahan dan diferensiasi sel serta sintesa protein. Auksin diproduksi dalam jaringan meristimatik yang aktif (yaitu tunas , daun muda dan buah) (Gardner, dkk., 1991). Kemudian auxin menyebar luas dalam seluruh tubuh tanaman, penyebarluasannya dengan arah dari atas ke bawah hingga titik tumbuh akar, melalui jaringan pembuluh tapis (floom) atau jaringan parenkhim (Rismunandar, 1988).
Auksin atau dikenal juga dengan IAA = Asam Indolasetat (yaitu sebagai auxin utama pada tanaman), dibiosintesis dari asam amino prekursor triptopan, dengan hasil perantara sejumlah substansi yang secara alami mirip auxin (analog) tetapi mempunyai aktifitas lebih kecil dari IAA seperti IAN = Indolaseto nitril,TpyA = Asam Indolpiruvat dan IAAld = Indolasetatdehid. Proses biosintesis auxin dibantu oleh enzim IAA-oksidase (Gardner, dkk., 1991).
Auksin pertama kali diisolasi pada tahun 1928 dari biji-bijian dan tepung sari bunga yang tidak aktif, dari hasil isolasi didapatkan rumus kimia auksin (IAA = Asam Indolasetat) atau C10H9O2N. Setelah ditemukan rumus kimia auksin, maka terbuka jalan untuk menciptakan jenis auksin sintetis seperti Hidrazil atau 2, 4 – D (asam -Nattalenasetat), Bonvel Da2, 4 – Diklorofenolsiasetat), NAA (asam (asam 3, 6 – Dikloro – O – anisat/dikambo), Amiben atau Kloramben (Asam 3 – amino 2, 5 – diklorobenzoat) dan Pikloram/Tordon (asam 4 – amino – 3, 5, 6 – trikloro – pikonat).
Auksin sintetis ini sudah digunakan secara luas dan komersil di bidang pertanian, dimana batang, pucuk dan akar tumbuh-tumbuhan memperlihatkan respon terhadap auksin, yaitu peningkatan laju pertumbuhan terjadi pada konsentrasi yang optimal dan penurunan pertumbuhan terjadi pada konstrasi yang terlalu rendah atau terlalu tinggi. Setelah pemanjangan ini, sel terus tumbuh dengan mensintesis kembali material dinding sel dan sitoplasma. Selain memacu peman-jangan sel, hormon Auksin yg di kombinasikan dengan Giberelin dapat memacu pertumbuhan jaringan pembuluh dan mendorong pembelahan sel pada kambium pembuluh sehingga mendukung pertumbuhan diameter batang.
Asam absisat (ABA)
Musim dingin atau masa kering merupakan waktu dimana tanaman beradaptasi menjadi dorman (penundaan pertumbuhan). Pada saat itu, ABA yang dihasilkan oleh kuncup menghambat pembelahan sel pada jaringan meristem apikal dan pada kambium pembuluh sehingga menunda pertumbuhan primer maupun sekunder. ABA juga memberi sinyal pada kuncup untuk membentuk sisik yang akan melindungi kuncup dari kondisi lingkungan yang tidak menguntungkan. Dinamai dengan asam absisat karena diketahui bahwa ZPT ini menyebabkan absisi/rontoknya daun tumbuhan pada musim gugur. Nama tersebut telah popular walaupun para peneliti tidak pernah membuktikan kalau ABA terlibat dalam gugurnya daun.
Pada kehidupan suatu tumbuhan, merupakan hal yang menguntungkan untuk menunda/menghentikan pertumbuhan sementara. Dormansi biji sangat penting terutama bagi tumbuhan setahun di daerah gurun atau daerah semiarid, karena proses perkecambahan dengan suplai air terbatas akan mengakibatkan kematian. Sejumlah faktor lingkungan diketahui mempengaruhi dormansi biji, tetapi pada banyak tanaman ABA tampaknya bertindak sebagai penghambat utama perkecambahan. Biji-biji tanaman setahun tetap dorman di dalam tanah sampai air hujan mencuci ABA keluar dari biji. Sebagai contoh, tanaman dune primroses (bunga putih) dan tanaman matahari (bunga kuning) di gurun Anza – Borrego (California), biji-bijinya akan berkecambah setelah hujan deras .
Sebagamana telah dibahas di atas bahwa giberelin juga berperan dalam perkecambahan biji. Pada banyak tumbuhan, rasio ABA terhadap giberelin menentukan apakah biji akan tetap dorman atau berkecambah. Hal yang sama juga terdapat pada kasus dormansi kuncup yang pertumbuhannya dikontrol oleh keseimbangan konsentrasi antar ZPT. Sebagai contoh pada pertumbuhan kuncup dorman tanaman apel, walaupun konsentrasi ABA pada kenyataannya lebih tinggi, tetapi gibberellin dengan konsentrasi yang tinggi pada kuncup yang sedang tumbuh menunjukkan pengaruh yang sangat kuat pada penghambatan pertumbuhan tunas dorman.
Selain perannya pada dormansi, ABA berperan juga sebagai “ stress plant growth hormon” yang membantu tanaman tersebut menghadapi kondisi yang tidak menguntungkan, misalnya pada saat tumbuhan mengalami dehidrasi, ABA diakumulasikan di daun dan menyebabkan stomata menutup. Hal ini walaupun mengurangi laju fotosintesis, tumbuhan akan terselamatkan dari kehilangan air lebih banyak melalui proses transpirasi.
Giberelin
Gambar 5 menunjukkan 2 kelompok tanaman padi yang sedang tumbuh. Kelompok di sebelah kiri adalah tanaman padi dengan pertumbuhan normal; sedangkan tanaman di sebelah kiri adalah tanaman padi dengan tinggi tanaman yang lebih besar tetapi memiliki daun yang berwarna kuning. Tanaman padi ini telah terinfeksi oleh cendawan Gibberella fujikuroi. Bibit padi yang telah terinfeksi akan rebah dan mati sebelum sempat menjadi dewasa dan berbunga. Selama berabad-abad petani padi di Asia mengalami kerugian akibat kerusakan yang ditimbulkan oleh cendawan ini. Di Jepang, pola pertumbuhan yang menyimpang ini disebut juga dengan “bakanae” atau “foolish seedling disease” atau “penyakit rebah anakan/kecambah“ .
Pada tahun 1926, ilmuwan Jepang (Eiichi Kurosawa) menemukan bahwa cendawan Gibberella fujikuroi mengeluarkan senyawa kimia yang menjadi penyebab penyakit tersebut. Senyawa kimia tersebut dinamakan Giberelin. Belakangan ini, para peneliti menemukan bahwa giberelin dihasilkan secara alami oleh tanaman yang memiliki fungsi sebagai ZPT. Penyakit rebah kecambah ini akan muncul pada saat tanaman padi terinfeksi oleh cendawan Gibberella fujikuroi yang menghasilkan senyawa giberelin dalam jumlah berlebihan.
Pada saat ini dilaporkan terdapat lebih dari 110 macam senyawa giberelin yang biasanya disingkat sebagai GA. Setiap GA dikenali dengan angka yang terdapat padanya, misalnya GA6 . Giberelin dapat diperoleh dari biji yang belum dewasa (terutama pada tumbuhan dikotil), ujung akar dan tunas , daun muda dan cendawan. Sebagian besar GA yang diproduksi oleh tumbuhan adalah dalam bentuk inaktif, tampaknya memerlukan prekursor untuk menjadi bentuk aktif. Pada spesies tumbuhan dijumpai kurang lebih 15 macam GA. Disamping terdapat pada tumbuhan ditemukan juga pada alga, lumut dan paku, tetapi tidak pernah dijumpai pada bakteri. GA ditransportasikan melalui xilem dan floem, tidak seperti auksin pergerakannya bersifat tidak polar.
Asetil koA, yang berperan penting pada proses respirasi berfungsi sebagai prekursor pada sintesis GA. Kemampuannya untuk meningkatkan pertumbuhan pada tanaman lebih kuat dibandingkan dengan pengaruh yang ditimbulkan oleh auksin apabila diberikan secara tunggal. Namun demikian auksin dalam jumlah yang sangat sedikit tetap dibutuhkan agar GA dapat memberikan efek yang maksimal. Sebagian besar tumbuhan dikotil dan sebagian kecil tumbuhan monokotil akan tumbuh cepat jika diberi GA, tetapi tidak demikian halnya pada tumbuhan konifer misalnya pinus. Jika GA diberikan pada tanaman kubis tinggi tanamannya bisa mencapai 2 m. Banyak tanaman yang secara genetik kerdil akan tumbuh normal setelah diberi GA.
Efek giberelin tidak hanya mendorong perpanjangan batang, tetapi juga terlibat dalam proses regulasi perkembangan tumbuhan seperti halnya auksin (Gambar 4). Pada beberapa tanaman pemberian GA bisa memacu pembungaan dan mematahkan dormansi tunas-tunas serta biji. Disintesis pada ujung batang dan akar, giberelin menghasilkan pengaruh yang cukup luas. Salah satu efek utamanya adalah mendorong pemanjangan batang dan daun. Pengaruh GA umumnya meningkatkan kerja auksin, walaupun mekanisme interaksi kedua ZPT tersebut belum diketahui secara pasti. Demikian juga jika dikombinasikan dengan auksin, giberelin akan mempengaruhi perkembangan buah misalnya menyebabkan tanaman apel, anggur, dan terong menghasilkan buah walaupun tanpa fertilisasi. Diketahui giberelin digunakan secara luas untuk menghasilkan buah anggur tanpa biji pada varietas Thompson. Giberelin juga menyebabkan ukuran buah anggur lebih besar dengan jarak antar buah yang lebih renggang di dalam satu gerombol
Giberelin juga berperan penting dalam perkecambahan biji pada banyak tanaman. Biji-biji yang membutuhkan kondisi lingkungan khusus untuk berkecambah seperti suhu rendah akan segera berkecambah apabila disemprot dengan giberelin. Diduga giberelin yang terdapat di dalam biji merupakan penghubung antara isyarat lingkungan dan proses metabolik yang menyebabkan pertumbuhan embrio. Sebagai contoh, air yang tersedia dalam jumlah cukup akan menyebabkan embrio pada biji rumput-rumputan mengeluarkan giberelin yang mendorong perkecambahan dengan memanfaatkan cadangan makanan yang terdapat di dalam biji. Pada beberapa tanaman, giberelin menunjukkan interaksi antagonis dengan ZPT lainnya misalnya dengan asam absisat yang menyebabkan dormansi biji.
Baca Juga Artikel Yang Mungkin Berhubungan : Daftar Macam-macam Bunga Yang Sangat Cantik & Indah | Ayoksinau.com
Faktor Hormon pada Tumbuhan
- Faktor Regulasi
Faktor regulasi adalah senyawa kimia yang mengontrol produksi sejumlah hormon yang memiliki fungsi penting bagi tubuh.Senyawa tersebut dikirim ke lobus anterior kelenjar pituitari oleh hipotalamus.Terdapat 2 faktor regulasi, yaitu faktor pelepas (releasing factor) yang menyebabkan kelenjar pituitari mensekresikan hormon tertentu dan faktor penghambat (inhibiting factor) yang dapat menghentikan sekresi hormon tersebut. Sebagai contoh adalah FSHRF (faktor pelepas FSH) dan LHRF (faktor pelepas LH) yang menyebabkan
dilepaskannya hormon FSH dan LH. - Hormon Antagonistik
Hormon antagonistik merupakan hormon yang menyebabkan efek yang berlawanan, contohnya glukagon dan insulin. Saat kadar gula darah sangat turun, pankreas akan memproduksi glukagon untuk meningkatkannya lagi. Kadar glukosa yang tinggi menyebabkan pankreas memproduksi insulin untuk menurunkan kadar glukosa tersebut.
Demikianlah ulasan mengenai hormon tumbuhan semoga bisa menambah wawasan dan bermanfaat untuk anda. tetap kunjungi terus www.ayoksinau.com sebagai medai pembelajaran.
Daftar Pustakaa
- Gardner, F. P., R. B. Pearce, dan R. L. Mitchell. 1991. Fisiologi Tanaman Budidaya. Universitas Indonesia Press. Jakarta.
- Goldsworthy, P. R. dan N. M. Fisher. Fisiologi Tanaman Budidaya Tropika. Gadjah Mada University Press. Yogyakarata. Goldsworthy, P. R. dan N. M. Fisher. Fisiologi Tanaman Budidaya Tropika. Gadjah Mada University Press. Yogyakarata.
- Heddy, S. 1996. Hormon Tumbuhan. Grapindo Persada. Jakarta.
- Irwanto. 2001. Pengaruh Hormon IBA (Indole Butyric Acid) Terhadap Persen Jadi Stek Pucuk Meranti Putih (Shorea montigena). Jurusan Kehutanan Fakultas Pertanian Universitas Pattimura. Ambon.
- Kartikawati, N. K. dan H. A. Adinugraha. 2003. Teknik Persemaian dan Informasi Benih Sukun. Pusat Penelitian dan Pengembangan Bioteknologi dan Pemuliaan Tanaman Hutan. Yogyakarta. Koswara, dan Sutrisno. 2006. Sukun Sebagai Cadangan Pangan Alternatif. http://www.ebookpangan.com [14 Agustus 2009].
- Salisbury, F. B. dan C. W. Ross. 1995. Fisiologi Tumbuhan. ITB. Bandung.
- Siregar, A. S. 2009. Inventarisasi Tanaman Sukun (Arthocarpus communis) pada Berbagai Ketinggian di Sumatera Utara. Skripsi. Departemen Kehutanan Universitas Sumatera Utara. Medan. Sitompul, S. M., dan B. Guritno. 1995. Analisis Pertumbuhan Tanaman. Gadjah Mada Universitas Press. Yogyakarta